Your address will show here +12 34 56 78
Mitsubishi Hitachi Power Systems, Ltd. (MHPS) has begun trial operation of gas turbine combined cycle (GTCC) for “Jawa-2 Project” underway by PT. PLN (Persero), Indonesia’s state-owned electricity provider, at the Tanjung Priok Power Plant on Java Island. The project, to construct GTCC natural-gas-fired power generation facilities, is now in its final stage toward completion and commercial start-up this May.
Jawa-2 is a comprehensive project to construct 880 megawatt (MW) GTCC power generating facilities in Tanjung Priok, a port city approximately 10 km northeast of central Jakarta. The full-turnkey order for the power plant’s EPC (engineering, procurement and construction) was received by MHPS in partnership with Mitsubishi Corporation and local construction and engineering firm Wasa Mitra Engineering for the GTCC power generation equipment. MHPS is responsible for providing two M701F gas turbines, two exhaust heat recovery boilers, one steam turbine and auxiliary equipment. Both simple cycle systems were accomplished ahead of schedule – Unit 1 in June 2018 and Unit 2 one month after – and have already gone into commercial operation. Currently, the works are proceeding on schedule toward commercial start-up of the GTCC system. To date, since its start the Jawa-2 project has experienced no accidents or disasters, in recognition of which PLN has given MHPS formal commendation of its safety record.
In addition to Jawa-2, MHPS and Mitsubishi Corporation have jointly received a full-turnkey order for EPC on a 500 MW natural-gas-fired GTCC power plant under construction by PLN at Muara Karang near Jakarta. Installation of the power generation equipment, including an M701F gas turbine, is proceeding smoothly – here again, without accidents or disasters – toward start-up of the GTCC system in December 2019.
Indonesia is currently undertaking a large-scale thermal power expansion program centered on the West Java region around Jakarta, under a government initiative to add 35,000 MW generation capacities in order to meet surging demand for power along with the country’s economic growth. Construction progress at related projects has been widely impeded, however, by impact from natural disasters. But on those projects where MHPS is participating, construction has been moving forward extremely smoothly with respect to safety, quality and construction schedule. As a result, representatives of PLN have expressed their full confidence in MHPS’ work, commenting that the close relationship between PLN and MHPS, already spanning 50 years, is their assurance of full peace of mind.

Source : https://www.turbomachinerymag.com/mhps-begins-gtcc-trial-operation-in-final-stage-of-jawa-2-project-in-indonesia/
 
0

 
Siemens SGT-A65 gas turbine

Gas turbine (GT) OEMs have been racing for decades to deliver bigger machines, higher efficiency and larger combined cycle plants. Siemens scored a world record with a 4,800 MW combined cycle plant in Egypt (Turbomachinery International, Nov/Dec 2018).
GE and Mitsubishi Hitachi Power Systems (MHPS) both claim to have the biggest GT. GE’s 9HA.02 comes in at 557 MW, while MHPS’s M701JAC provides 563 MW. GE, Siemens and MHPS all claim the world record on combined cycle efficiency.
Yet market forces may be dictating a completely different direction — that bigger is not necessarily better. Small and mid-sized turbines are now receiving more attention as the power generation and oil & gas markets diversify. This trend is being driven by distributed generation, renewables, microgrids, combined heat & power (CHP), lower emissions and hydrogen-based generation.
“The industry has been guilty of building ever-larger machines and then trying to find a market for them,” said Mark Axford, President of Axford Consulting. “A better approach would be to find what the market needs and building machines to fit those requirements.”

Solar Turbines
Solar is a leader in small machines, producing GTs ranging from 1.2 MW to 22 MW. Some use a diffusion flame combustor and others a DLE system. The DLE system keeps flame temperature much lower (1,600°C versus 2,300°C) to keep NOx emissions down. Solar machines can operate with LPG, coke oven gas, landfill or digester gas.
“LPGs have become more common due to shale gas offering up more propane at low cost,” said Luke Cowell, Group Manager, Combustion Strategy, Solar Turbines. “This fuel can be burned in a Solar GT with lower NOx emissions and lower particulates compared to diesel.”
The composition of LPG around the globe can shift from 100% butane to 100% propane, said Cowell. With more butane, it is better to run it in liquid phase. Propane, though, has a lower dew point so is better in the gas phase.
At a Caribbean rum distillery in St. Croix, a Solar Centaur 50 is used with LPG for CHP. LPG is much lower priced there than diesel. As it has only 2.5% butane, the Centaur 50 is run in the gas phase with the fuel temperature maintained at around 200°F.
China’s Liheng Steel, meanwhile, is using four Solar Titan 130s operating on coke oven gas with an HRSG and steam turbine.
“LPG is an excellent turbine fuel, but you need to determine whether it is optimum to use it in its gas or liquid phase,” said Cowell.

MHPS
For the mid-sized turbine market, MHPS provides the H-100. At 119.9 MW (50 Hz) shaft power, it is being used to replace less efficient machines without requiring a modification to the bottoming cycle. It is also used in mechanical drive applications.
H-100 specifications: 38.9% efficiency, exhaust flow of 302 kg/s, and an exhaust temperature of 573°C. Its DLE burner is a scaled-down version of the combustor from the MHPS M501G and M501J. It provides 9 ppm NOx and CO.
“The MHPS H-100 GT has been successfully validated with lean gas (up to 40% N2), rich gas with a high calorie value, such as LNG, and on-line switching between lean and rich fuel at a Wobbe Index rate of change up to 0.5% per second,” said MHPS CEO Paul Browning. “It is the world’s largest two-shaft turbine.”
The two-shaft MHPS H-100 is finding a niche in LNG liquefaction as an alternative to the single-shaft GE 7EA, said Browning. The LP rotor has a continuous speed range capability of 70% to 105%. The two-shaft design allows full settle-out pressure starts. MHPS is partnering with MCO Compressor to deliver a complete solution to the oil & gas field.
Another smaller machine gaining traction is PW Power Systems’ FT8, sold in modified form as a “Frack Pack.” It offers 30 MW of mobile power to electrify the well pad. U.S. Well Services in Texas, for example, bought six of these units. Instead of diesel, it uses natural gas from the local site. They move them from well pad to well pad based on demand.
Zorya-Mashproekt from Ukraine offers a series of GTs ranging from 2.5 MW to 114 MW. Some 1,200 have been manufactured to date along with about 2,000 centrifugal compressors.
Despite embargoes from Russia, Forecast International predicts Zorya’s sales to improve over the next decade with 25-to-30 sales per year on average. The UGT-15000, for example, is a 16.9 MW, three-shaft GT with an axial nine-stage low-pressure compressor and 10-stage high pressure compressor.
Vericor has two such gas turbines in its repertoire. The 3.3 MW ASE40 and 3.7 MW ASE50B GTs are compact units for stationary, continuous duty applications. These units boast 60,000 hours between scheduled shop visits.
They can run on natural gas or liquid fuel. In addition, they can be changed over from one fuel source to another while running under full load.
Vericor Power Systems is owned by MTU Aero Engines and is the OEM of the TF series and ASE series GTs. Its aeroderivatives are used in marine, offshore, industrial and mobile power applications.
The TF40 (4,000 hp) and TF50 (5,000 hp) are used in the marine sector. Its VPS3 (TF40F) and VPS4 (TF50F) are favored in oil & gas. Its VPS3 (ASE40) and VPS4 (ASE50) are used mainly in the industrial sector.

Microturbines
The microturbine market has been stable for some time. But that may be about to change. Capstone Turbine, FlexEnergy and Ansaldo Energia are market leaders. Blandon (formerly Bladon Jets), a UK company, Micro Turbine Technology (MTT) from the Netherlands, and Aurelia Turbines from Finland have also entered the market.
Ansaldo’s AE-T100 is a single-shaft, high-speed microturbine that delivers 100 kW. Some 600 have been made since its release in the nineties.
Primary uses include CHP with biogas feedstock, and areas where small amounts of power, less noise, vibration and emissions are needed. The GT comes with a recuperator, electrical system, exhaust gas heat exchanger, control system and a single-stage centrifugal compressor.
Bladon’s MTG12, a 12 kW machine, is designed to power cellular towers for telecom companies. Towers not connected to a grid are in demand, a market historically dominated by reciprocating diesel engines. The MTG 12 is said to have advantages over diesels, such as fuel flexibility and lower maintenance, and to require 90% fewer site visits.
MTT’s EnerTwin can provide 3.2 kW of output for heat or electricity. Potential applications range from larger homes to restaurants and schools.
Aurelia Turbines has introduced a 400-kW model. This microturbine can be used for process steam, chilling and direct current applications. Efficiency is above 40%.

Combined Heat & Power
Smaller gas turbines are in demand in areas where CHP is growing in popularity. The complexity inherent in the development of smaller onsite power and CHP assets is being addressed by regulated utilities supporting and developing projects at customer sites, said Kurt Koenig, Vice President Project Development at DCO Energy.
Instead of fighting CHP and regarding it as a potential competitor, some utilities are embracing it, said Koenig. They realize that they have the grid and technical expertise to develop these projects and partner with industrial customers for mutual benefit.
DCO Energy has identified several major customer groups as CHP collaboration targets: healthcare, government and educational institutions, military, industrial, manufacturing, data centers, gaming and corrections. Projects can either be self-funded, privately funded, publicly funded or can be a combination.
“Drivers for CHP include cost, environmental impact, and fewer service interruptions,” said Koenig.
Where public benefits can be identified, regulated utilities can be a catalyst for CHP and other distributed generation assets. Potential CHP sites may have a strong desire to build onsite power. But they lack the know-how, financing, and grid expertise to achieve it. By involving a willing utility, a mutually beneficial solution can sometimes be achieved.
For example, the local utility facilitated a CHP site at the Hudson Yards real estate project in New York by removing barriers to grid access. It included gas-fired boilers, centrifugal electric-drive chillers, a 7.2 MW GT with a waste heat recovery boiler, and gas-based reciprocating engines that provide, heating, cooling and power to commercial and residential space on Manhattan’s West Side.
In another example, Duke Energy worked with Clemson University on a 15 MW CHP plant on campus. Owned by Duke, the utility provides access to natural gas and the grid. The facility includes natural gas turbines and duct-fired HRSGs. It supplies electricity and steam to Clemson. Duke gains steam and electricity. The campus also gains its own microgrid, partially funded by Duke.
“In this case, the public good was served as the provision of steam drove down rates for electricity,” said Koenig.
A similar example was outlined by Ken Duvall, Managing Partner and CEO at Sterling Energy Group. He believes CHP is vastly underused with only 82 GW existing in the U.S. It is estimated that there is 200 GW of untapped CHP potential in the nation.
“Well applied, CHP is the most efficient method of generating power,” said Duvall. “It is based on established natural gas technology that has very low risk.”
He emphasized that a change of thinking is required. Instead of CHP only being viewed as a customer-owned resource, a variety of ownership and funding options are possible. Some utilities are happy to develop and own the entire facility, arranging attractive, long-term contracts for power supply.
The utility can sell the excess electricity to other customers. With steam as part of the equation, some industrial plants will take up much of the steam and some of the power. Many permutations are possible.
Duvall showcased a CHP project on Amelia Island in northeastern Florida. It serves Rayonier Advanced Materials a supplier of cellulose specialty products. Company expansion called for more steam for industrial processes.
Rayonier leased land to Eight Flags Energy (a subsidiary of Chesapeake Utilities) for the establishment of a CHP plant. Rayonier gains 20-year access to low-cost steam. It receives steam at 160 psi and 420°F. Eight Flags supplies electricity to Florida Public Utility (FPU, part of Chesapeake) to meet about half of Amelia Island’s electricity requirements.
The guts of the CHP system include a 20 MW Titan 250 GT from Solar Turbines and a Rentech HRSG. The facility considered running the GT in simple cycle mode, but that would have given it too low an efficiency to make the project economics work.
Adding an HRSG for combined cycle operation changed the equation. The HRSG recovers around 70,000 pounds of steam per hour and has the capability to increase that amount using Rentech duct burners to 125,000 pounds per hour of process steam.
De-mineralized water provided by Rayonier is channeled through a hot water economizer in the HRSG to increase the water temperature by 70°F. This hot water is sent back to Rayonier for use in production processes.
Eight Flags has a capacity factor of 95%. This 22 MW CHP plant has lowered electric costs by 10%, while lowering NOx by 80% and CO2 by 38%.
“Rayonier receives steam and power, which it needed for expand,” said Duvall. “We built it on an elevated coastal site to be above any storm surge.”
The plant paid nothing for the power and steam plant. As it did not need any additional power, the utility sells electricity to other customers. But the plant would not have been possible without the tight partnership between the local grid authority, the utility, and the industrial customer. Plans are ongoing to open a second CHP plant on the island, said Duvall.
 
FERNANDINA BEACH, FLA. 04/01/14-RAYONIER040114CH- at the Rayonier Performance Fibers Mill in Fernandina Beach, Fla. on April 1, 2014. COLIN HACKLEY PHOTO

Ford goes CHP
Ford Motor Co., with DTE Energy, is building a 34 MW CHP plant at its site in Dearborn, Michigan. The Central Energy Plant, inclusive of the CHP plant, at the Dearborn Campus entails a $300 million investment.
The plant will be owned by DTE Electric, the regulated arm of DTE Energy, and constructed and operated by DTE Energy Services, a non-regulated arm of DTE Energy.
Michael Larson, Director Business Development, DTE Energy Services, said that the plant encompasses several components: 16,000-ton chiller system using mechanical and heat pump chillers; 40,000-ton/hr thermal energy storage; 6,400-ton geothermal system; 156 MMBtu/hr hot water supply system; two 14.5 MW GTs from Solar Turbines; 5 MW steam turbine from Siemens; and 370,000 lb/hr of heat recovery steam generators from Rentech Boiler Systems.
“Over the next 10 years, the steam load will sink and the electric load at the campus will rise while both will continue to have seasonal variations,” said Larson.
That made sizing of the CHP plant more complicated than usual. Ford initially looked at a smaller CHP plant. But that would only provide power for its own need and might not satisfy fluctuating steam and electricity requirements.
In addition, project economics demanded a larger facility that generated enough electricity to sell to external customers. Ford will purchase power and steam from DTE Electric. Construction of the facility is scheduled to be completed by the end of 2019. ■

Sidebar: Customized lubrication
ExxonMobil advises those running small or mid-sized turbines to take care when selecting lubricants. The decision should be based on the application environment and a thorough oil analysis.
Smaller turbines typically use gearboxes that run at a higher speed. However, their efficiency is lower than larger frame machines, which generally do not have gearboxes. For smaller machines, the choice of lubricant is important.
Mike Galloway, Equipment Builder Engineer at ExxonMobil, said the oil type should be tailored to the load. For the 6F, he recommended the Mobil DTE832 or 932GT meeting GE’s required GEK 101941 specification.
“6F turbines run hot and need a thermally stable oil that is oxidation and varnish resistant,” said Galloway. “If poor quality oils are used, varnish can quickly build up, and that can eventually lead to a trip.”
COT-Puritech (a Circor company) also offers value-added service to turbine owners. Christopher Tomerlin, Director of Global Accounts at COT-Puritech, said his company can be called in to flush out the entire lubrication system.
An analysis is done to determine the chemical mix required. To remove varnish, a high-velocity flush is often needed, followed by a purge to get rid of any chemical residues.
“We sample the oil and conduct extensive tests,” said Tomerlin. “This helps determine which process is best for cleaning. For example, a varnish flush might consist of 24 to 48 hours of circulating the chemicals to remove the varnish. Once completed, the system is drained and then purged to extract all the chemistry. After that, the new oil can be introduced.

Sidebar: HYDROGEN TURBINES AND OTHER ALTERNATE FUELS
Hydrogen-fueled gas turbines continue to be an active area of research and development (Turbomachinery International Sept/Oct 2018). Hydrogen has the potential to be a greener and cleaner fuel source for GTs, said Elena McKenzie, Market Analyst at Ansaldo Energia’s PSM division. Faced with the rapid growth of renewables, declining revenue, rising O&M costs, and the demand for cleaner generation, all OEMs are looking at how to further reduce emissions.
One approach is to mix hydrogen with natural gas. As well as lowering emissions, McKenzie touted the use of excess renewable capacity used to generate hydrogen through hydrolysis and then feeding that hydrogen into the combustion process. To meet modern power generation needs, though, all-hydrogen GTs would have to be supported by vast fields of renewable assets and colossal storage facilities.
Ansaldo Energia is currently testing a turbine running on 70% hydrogen. Combining hydrogen with natural gas has several benefits. Some 25% hydrogen offers 9% fuel savings, and a 9% reduction in CO2. Far from being theoretical, a Frame 9E is running in the Netherlands with 25% hydrogen.
“As you add hydrogen, the speed of chemical reaction in the combustor changes,” said McKenzie. “Inert gases, such as nitrogen, tend to reduce the speed of reaction; the flame shifts farther downstream, and you have greater risk of flame outs.”
Hydrogen challenges
More tuning is needed, too, as the hydrogen content rises. PSM has devised an autotune solution to avoid combustor problems and optimize operations.
Most OEMs have an ongoing hydrogen initiative. “The challenge is to keep the flame stable, avoid flashback and at the same time keep emissions down,” said Asa Lyckstrom, Commercial Manager Product Positioning at Siemens Medium GT Fleet. As hydrogen ignites and burns ten times faster than natural gas, the flame forms closer to the injector and has a wider flammable region than a fuel/air mix. However, only a fraction of the ignition energy is needed to get H2 going compared to methane.
Siemens has designed a 3D-printed DLE burner to keep NOx levels down despite rapid burning. It can be used with hydrogen in the Siemens SGT-600, SGT-700, and SGT-800. Inside the 57 MW SGT-800, 30 of these burners operate within the annular combustor. Siemens is also testing a burner running 100% hydrogen. It is confident that it can run the SGT-800 with 50% hydrogen by volume while keeping NOx below 25 ppm.
The Siemens SGT-A65 (formerly the Industrial Trent) can burn 100% hydrogen using a Wet Low Emissions (WLE) burner that keeps NOx at 25 ppm. It is a three-shaft, axial-flow, aeroderivative GT that produces 60 MW to 71 MW depending on its configuration and is suitable for flexible peaking and combined cycle applications.
More than 115 SGT-A65 machines have been manufactured and installed around the world. Some units have also been installed in mechanical load drive duty for gas boosting in Qatar. In mechanical drive applications, its three-independent-shaft design is suited to the higher power, variable-speed demands of applications such as natural gas liquefaction, gas transportation and gas induction for oil recovery.
The SGT-A65 includes a two-stage low pressure (LP) compressor with variable inlet guide vanes (VIGVs). It has a high overall pressure ratio and high thermal efficiency. In addition, the LP compressor boosts the airflow so that the power level is attained at a firing temperature sufficiently low to meet severe NOx requirements. Yet it is sufficiently high to give good cycle efficiency.
The intermediate-pressure (IP) compressor has eight stages and three rows of variable stators. The high-pressure compressor has six stages, with no variable stators. Overall pressure ratio is 34.1:1 for the 50 Hz dry low emissions (DLE) configuration.
Further, the SGT-A65 incorporates a series of staged pre-mix, lean-burn combustion cans that allow the GT to achieve low NOx and CO simultaneously. Eight combustors are incorporated into a single module.
The SGT-A65 has a five-stage LP turbine, a single-stage IP turbine, and a single-stage HP turbine. Each of these turbines drives its own compressor. The SGT-A65 LP Stages 4 and 5 have a larger gas path area and a lower exit Mach number than the Trent aero version.
A Siemens or Allen-Bradley control system provides integrated operation of multiple control functions while offering remote monitoring. The control system is designed for easy site installation by using remote I/O technology to decrease the number of interconnect cables between the unit control panel and the equipment skids. All train control systems are accessed by a Human Machine Interface (HMI) in the main control room.
The composition of fuels used in gas turbines varies considerably

Alternate fuels
GTs can burn a great many fuels including biodiesel, lean methane, hydrogen, liquefied petroleum gas (LPG), propane, and more.
“Gas turbines are flexible by nature and we are seeing many requests for them to burn all kinds of fuel,” said Jeffrey Goldmeer, Director of GT Combustion and Fuel Solutions at GE.
Biodiesel, for example, is experiencing a resurgence in Asia. Indonesia has mandated a blend of palm oil for power generation known as B20 (20% palm oil mixed with diesel). These fuels can be used by GTs.
Gas constituents and contaminants can vary widely depending on the source, said Goldmeer. Biodiesel typically has lower SOx emissions than heavy fuel oil, but its sodium content can be changeable. Sources include soybean oil, animal and vegetable waste, and canola oil.
Another alternative fuel of interest is LPG. However, one challenge is the lack of a universal definition: the propane and butane content can change markedly depending on geography or the season or the source wells. The scale of domestic supply logistics may limit build out in some countries.
GE has been running turbines with medium BTU gas, lean methane and fuels high in N2, CO2 or H2S. In regions with limited access to LNG, such fuels may be all that is available. Goldmeer said GE has over 1 million running hours on its GTs on these fuels.
However, he questioned the viability of what is known as green hydrogen: it is produced through the electrolysis of water and powered by solar generation. In his view, it is unrealistic due to the sheer quantity of water needed for electrolysis. Despite that, he entertained the possibility that LNG could be replaced by hydrogen power by 2050.
“But full decarbonization could double the cost of electricity,” said Goldmeer.
GE’s advanced pre-mixer is available for high hydrogen applications. It can deal with up to 50% of H2 by volume. Existing GTs can be upgraded to accommodate this change in fuel. But the rest of the plant may also have to be upgraded: ventilation, enclosures, safety procedures, and more. Heat Recovery Steam Generators (HRSGs) may have to be adjusted to deal with the presence of far more moisture.
“The more hydrogen you add into the fuel mix, the higher the moisture content,” said Goldmeer. “This also impacts heat transfer in the hot gas path, and HRSG operation.”
GE is putting renewed vigor behind its 6F machine in the medium-sized turbine market. With combined cycle plants owning 68% of the market and growing, GE is focusing the 6F in that niche.
“Given broad market dynamics such as the increasing penetration of renewables, the greater flexibility of combined cycle plants, and its high efficiency, the 6F has the right footprint,” said Aileen Barton, 6F.03 Senior Product Manager for Medium-Sized GTs at GE.
The GE 6F.03 provides 68 MW to 87 MW and offers 57% efficiency in combined cycle mode. It has 32,000-hour combustion and hot gas path inspection intervals. All versions of the turbine can run on gases and liquids, and additional fuels are added with each technology advancement. This includes natural gas, LNG, lean methane, LPG, H2 blends, sour gas, light distillate, oil, naphtha, and light crude oils.
The 6F.03 AGP (Advanced Gas path) upgrade includes the DLN 2.6+ combustor, as well as improved materials, coatings and cooling. Better metal seals reduce leakage and tighter clearances are achieved with abradable coatings. GE is also promoting a way to upgrade a 6B or 6E machine to the 6F. This leads to a 3% efficiency gain and major fuel savings, said Barton.

Source : https://www.turbomachinerymag.com/smaller-gas-turbines-find-their-niche/

PT PLN (Persero) kembali menunjukkan prestasinya dalam mengelola perusahaan yang bersahabat dengan lingkungan melalui acara Social Business Innovation Award dan Green CEO Award 2016, Kamis (25/8). green ceo award 2016Acara yang digelar di Pullman Hotel Jakarta tersebut menempatkan PLN menerima penghargaan Social Business Inovation Award 2016 untuk kategori pembangkit listrik dengan program Penghematan Energi. Tak hanya itu, prestasi PLN semakin lengkap ketika Direktur Utama Sofyan Basir juga berhasil mendapatkan penghargaan Green CEO Award 2016. Acara tersebut dihadiri oleh Dirjen Lingkungan Hidup, Ketua Komisi 7 DPR sekaligus pendiri Warta Ekonomi Fadil Muhammad, dan Menteri Perindustrian, Erlangga Harnanto. Penghargaan tersebut diterima oleh Bambang Dwiyanto selaku perwakilan PLN yang juga menjabat Sekretaris Perusahaan. “Di sini saya sebagai perwakilan PLN ikut bangga dengan apa yang telah diraih PLN. Itu berarti program yang dijalankan PLN mendapat perhatian dari masyarakat luas hingga mendapatkan apresiasi seperti sekarang ini,” tutur Bambang. Bambang juga berharap jika penghargaan seperti ini bisa didapatkan PLN. Karena mempertahankan sesuatu hal lebih sulit daripada merebutnya. Semoga kedepan PLN bisa menghadirkan program-program yang bisa bermanfaat untuk lingkungan serta masyarakat. Tak hanya itu, prestasi juga diraih oleh PT PJB dan Indonesia Power yang mendapatkan penghargaan dengan program efisiensi energi, serta teknologi ramah lingkungan.
  Sumber : http://www.pln.co.id
0

PLTU Batang – Jawa Tengah 2 x 1.000 MW siap memasuki tahap konstruksi pembangkit. Hal ini ditandai melalui peresmian Financial Close PLTU Batang – Jawa Tengah yang berlangsung di Istana Negara, Kamis (9/6). Peresmian disaksikan oleh Presiden RI Joko Widodo yang didampingi oleh Menteri Koordinator Bidang Perekonomian (Menko Ekon) Darmin Nasution selaku Ketua Komite Percepatan Pembangunan Infrastruktur Prioritas (KPPIP). Acara ini juga dihadiri oleh jajaran Menteri, di antaranya Menteri Badan Perencanaan Pembangunan Nasional (Bappenas), Menteri Keuangan, Menteri Energi dan Sumber Daya Mineral (ESDM), dan Menteri Badan Usaha Milik Negara (BUMN). Peresmian dilakukan dengan penyerahan Certificate of Loan Agreement dari Japan Bank International Cooperation (JBIC) kepada Bimasena Power Indonesia (BPI), penyerahan Certificate of CP Completion Financing Date Certificate dari PLN kepada BPI, dan penyerahan Pernyataan Efektif Penjaminan Pemerintah dari Kementrian Keuangan dan Penjamin Infrastruktur Indonesia (PII) kepada BPI. “Ini adalah proyek besar yang bisa memberikan pesan bahwa untuk kebutuhan dan keperluan rakyat, pemerintah akan ikut menyelesaikan masalah yang ada. Karena kita tahu, kalau proyek ini tidak dimulai, saya sudah membayangkan 2019 itu byarpet-nya akan tambah meluas. Ini karena kebutuhan listrik setiap tahun bertambah, bertambah dan bertambah,” ungkap Jokowi. Dalam sambutannya, Jokowi juga menegaskan agar investor dapat menjalankan proyek ini dengan sebaik mungkin dan selesai pada 2019. PLTU Jawa Tengah yang juga dikenal dengan sebutan PLTU Batang merupakan proyek yang dibangun dengan pola Kerjasama Pemerintah Swasta (KPS/PPP) dengan jaminan yang disediakan oleh PII/IIGF. Proyek KPS PLTU Jawa Tengah ini merupakan proyek KPS skala besar pertama dengan total nilai investasi USD 4,2 miliar, sekaligus proyek KPS pertama yang dilaksanakan berdasarkan Peraturan Presiden No. 67 Tahun 2005 tentang Kerjasama Pemerintah Dengan Badan Usaha Dalam Penyediaan Infrastruktur. Proyek yang berlokasi di Desa Ujungnegoro Kecamatan Kandeman dan Desa Ponowareng Kecamatan Tulis, Kabupaten Batang ini digarap oleh BPI yang merupakan konsorsium perusahaan asing dan lokal yaitu PT Adaro Power dengan porsi saham 34 persen, Electric Power Development Co. Ltd sebesar 34 persen dan Itochu Corporation 32 persen. Sebelumnya, pada Senin (6/6), Direktur Utama PLN Sofyan Basir bersama Direktur BPI Mohammad Effendi menandatangani Jointly Certificate di Kantor PLN Pusat. Penandatanganan ini menandai telah tercapainya Financial Close Date Proyek PLTU Jawa Tengah. Hal ini berarti konstruksi fisik proyek secara kontrak telah dimulai hari itu juga. Konstruksi pembangkit juga siap dilakukan karena BPI telah melakukan berbagai persiapan di lokasi proyek, seperti pemasangan pagar proyek, pembuatan jalan konstruksi sementara dan drainasi, pembuatan saluran air hujan, penyediaan lahan pengganti beserta saluran irigasinya, dan pembuatan sistem terasering pada bukit yang tidak dipotong. Dengan begitu, pembangkit sudah benar-benar siap dibangun. Penandatanganan perjanjian kesepakatan pembiayaan proyek (financing agreement) sendiri telah ditandatangani BPI dengan para kreditur pada Jumat (3/6). Pendanaan senilai USD 3,421 miliar ini berasal dari JBIC dan sindikasi bank yang terdiri dari 9 bank komersial, yakni SMBC, BTMU, Mizuho, DBS, OCBC, Sumitomo Trust, Mitsubishi Trust, Shinsei dan Norinchukin. Proyek ini menerapkan skema Build, Own, Operate, Transfer (BOOT) dengan masa konsesi selama 25 tahun. Proyek ini menjadi bagian dari Master Plan Percepatan dan Perluasan Pembangunan Ekonomi Indonesia yang akan menjadi lokomotif dalam perkembangan ekonomi Jawa. Tambahan Pasokan 2.000 MVA akan Dorong Sektor Industri Jawa Tengah PLTU Batang merupakan proyek hulu, untuk dirasakan dampaknya hingga hilir. Rencananya akan dibangun GITET Batang (Pemalang) 500 kV dengan 2 Inter Bus Transformer (IBT) 500/150 kV masing-masing 500 MVA. Selain itu juga akan dibangun GITET 500 kV Tuntang (Ampel) dengan kapasitas yang sama dengan GITET Batang, sehingga total tambahan pasokan ke sistem 150 kV Jawa Tengah menjadi 2.000 MVA. Tambahan pasokan ke sistem Jawa Tengah hingga 2.000 MVA memberikan peluang yang sangat besar bagi pelanggan industri, seperti pelanggan di Kawasan Industri Kendal (KIK) dan Kawasan Industri Rembang. Tambahan pasokan ini juga akan mendukung rencana pengembangan industri besar di Solo dan Yogyakarta. Jika asumsi beban Industri besar rata-rata 50 MVA, maka dapat menampung sekitar 40 Industri skala besar. Dengan berkembangnya sektor industri di Jawa Tengah, otomatis akan membuka peluang kerja yang lebih banyak bagi masyarakat setempat. Selain sektor industri, kehadiran PLTU Batang pun akan memberikan peluang yang besar bagi pelanggan rumah tangga. Jika asumsi beban rumah tangga 1.300 VA maka dapat menyambung sekitar 1.500 pelanggan rumah tangga baru. PLTU Jawa Tengah dibangun dengan menggunakan teknologi terkini, yakni Ultra Super Critical, yang lebih ramah lingkungan dan efisien. PLTU ini nantinya akan memanfaatkan pasokan batubara nasional. Hal ini akan membantu PLN menurunkan biaya pokok produksi (BPP) dan menurunkan subsidi pemerintah kepada PLN. Selain itu, proyek ini akan membuka peluang lapangan kerja kepada minimum 5.000 penduduk setempat dan memberi peluang partisipasi komponen lokal dalam proses produksinya, dan selanjutnya hal ini akan mendorong bergulirnya roda ekonomi nasional. Kehadiran PLTU Batang diharapkan dapat memperbaiki cadangan pembangkit serta meningkatkan keandalan sistem Jawa Bali, sehingga kondisi siaga atau kritis akibat kekurangan pembangkit tidak terjadi. Saat ini kapasitas terpasang sistem Jawa-Bali sebesar 33.863 MW dengan daya mampu 31.614 MW dan beban puncak 24.589 MW. “Saat ini kapasitas di sistem interkoneksi Jawa-Bali memang masih surplus. Namun dengan perkiraan pertumbuhan ekonomi 6-7 persen per tahun dan target rasio elektrifikasi sebesar 98 persen pada 2019, maka PLN perlu menambah kapasitas infrastruktur ketenagalistrikan agar mampu mendukung pertumbuhan ekonomi,” jelas Direktur Utama PLN Sofyan Basir.
0

Dalam upaya untuk meningkatkan pemanfaatan Energi Baru Terbarukan (EBT), meningkatkan rasio elektrifikasi, serta mempercepat program melistriki desa yang belum berlistrik, pada hari Senin, 30 Mei 2016, PT PLN (Persero) melaksanakan penandatanganan Power Purchase Agreement (PPA) dan kontrak pembelian excess power dengan Pengembang Pembangkit EBT tersebar di Regional Sumatera dengan total kapasitas 115,6 MW dan penandatanganan MOU pengembangan pembangkit EBT sebesar 14,7 MW. Adapun rincian lokasi- lokasi pembangkit EBT dan excess power yang PPA nya di tandatangani tersebut antara lain: • Provinsi Sumatera Utara : Pembangkit Mini Hidro dengan pengembang PT. Bakara Energi Lestari sebesar 10 MW terletak di desa Siunong-Unong Humbang Hasundutan. Selain itu Pembangkit Listrik tenaga Biogass sebesar 1 MW dengan pengembang PT Siringo-ringo terletak di Desa Sidomulyo, Labuhan Batu. • Provinsi Riau : Pembangkit Biomass sebesar 15 MW dengan pengembang PT. Riau Prima Energi berlokasi di Pangkalan Kerinci. Pembangkit berbahan bakar Biogas sebesar 1 MW juga akan dibangun di Pasir oleh pengembang PT. Permata Hijau Sawit. Selain itu ada juga PLTMG (excess power) sebesar 25 MW di Pelalawan dengan pengembang PT. Langgam Power. • Provinsi Sumatera Barat : PLTM 13,4 MW akan dibangun di Desa Pelangai Gadang, Pesisir Selatan oleh pengembang PT. Dempo Sumber Energi. • Provinsi Sumatera Selatan dan Bengkulu : PLTMH dengan total daya sebesar 21,2 MW akan dibangun tersebar di Kota Agung Lahat, Banding Agung-OKU Selatan, Muara Kisam-OKU Selatan, Padang Guci Hulu-Seluma, Kepahiang, Rejang Lebong dan Bengkulu Utara yang akan dibangun oleh pengembang PT. Green Lahat, PT. Nusantara Indah Energindo, PT. Midigio, PT. Sahung Brantas Energy, PT. Malaka Guna Energi, PT. Tropisindo Sumber Energi dan PT. Klaai Dendan Lestari. • Provinsi Bangka Belitung : Pembangkit Biomass dan Biogas dengan total daya sebesar 14 MW akan tersebar di desa Cengkong Abang sebesar 2 MW yang dikembangkan oleh PT. Bangka Biogas Sinergy, di Desa Mempaya Bangka sebesar 7 MW dikembangkan oleh Belitung Energy dan di Desa Tempilang Belitung sebesar 5 MW dikembangkan oleh Listrindo Kencana. • Provinsi Lampung : PLTM yang dikembangkan oleh PT. Uway Energy Perdana sebesar 7 MW akan dibangun di Desa Kemu, Kab Way Kanan. Selain itu Pembangkit Biomass juga akan dibangun sebesar 3 MW di desa Gunung Batin Lampung Tengah oleh PT. Gunung Madu Plantations. Excess Power PLTU sebesar 17 MW dari PLTU Pelabuhan Tarahan sebesar 10 MW dan PLTU PT. Budi Starch & Sweetener Tbk sebesar 7 MW juga akan menambah daya di Lampung. Sementara di Pulau Simuleu Aceh akan dikembangkan pembangkit dengan bahan bakar CPO sebesar 5 MW. Perwakilan pengembang yang diwakili oleh Sutjipto, Direktur PT Sahung Brantas Energy menyampaikan bahwa kerjasama ini merupakan kerjasama jangka panjang dan harus dijaga untuk tidak terjadi hal-hal yang tidak diinginkan. “Ini menjadi motivasi bagi kami untuk mengembangkan potensi-potensi yang lain untuk memenuhi daerah yang belum berlistrik,” ungkapnya. Sementara itu Direktur Bisnis Regional Sumatera Amir Rosidin menyampaikan bahwa energi ini sangat dibutuhkan untuk melistriki Sumatera. “Saat ini beban di Sumatera sekitar 5.250 MW. Kami berharap dalam 2 tahun sudah berjalan dan dirasakan manfaatnya bagi masyarakat,” tambahnya. Sampai dengan Mei 2016, Pembangkit Listrik Mini Hidro (kapasitas <10 MW) yang sudah beroperasi di wilayah Sumatera sebesar 115 MW yang tersebar di 31 lokasi, sementara 130 MW pada yang tersebar pada 18 lokasi memasuki fase konstruksi. Sementara komposisi energi mix pada sistem kelistrikan Sumatera, Gas 35,7 %, Batubara 32,6 %, PLTA 16 %, Panas Bumi 2,7 % dan BBM 13%. Dengan ditandatanganinya PPA dan kontrak pembelian excess power hari ini, makin menunjukkan komitmen PLN untuk terus mendorong pemanfaatan Energi Baru Terbarukan dalam upaya meningkatkan rasio elektrifikasi dan melistriki desa yang belum berlistrik sehingga target Rasio Elektrifikasi sebesar 98 % pada tahun 2019 dan target porsi EBT 25 % pada tahun 2025 dapat tercapai.
0

Sebagai wujud brand awareness atas produk Pertamina di dunia Industri Aviasi, Pertamina melalui fungsi Petrochemical Trading turut serta dalam ajang Aviation Maintenance Repair and Overhaul In­do­nesia (AMROI) 2016 yang di­selenggarakan pada 20-21 April 2016 di hotel Grand Mercure Jakarta.  Perhelatan diikuti 11 exhibitor dan le­bih dari 100 peserta dari ber­bagai perusahaan dalam dan luar negeri
Acara diresmikan oleh Men­teri Perindustrian, Mu­hammad Saleh Husein yang memberikan apresiasi terhadap perusahaan-peru­sahaan Maintenance Repair and Overhaul, baik domestik maupun internasional yang telah hadir dan berpartisipasi dalam acara tersebut.
Saleh Husein me­nyam­paikan industri dir­gantara di Indonesia meng­alami perkembangan yang cukup pesat seiring dengan per­kembangan teknologi saat ini. Ditambah dengan keberhasilan PT Dirgantara Indonesia selaku produsen pesawat dalam negeri dalam mengembangkan pesawat type Turboprop N219 yang laris manis di pasaran.
Pertamina turut ber­partisi­pasi dalam AMROI 2016 sebagai upaya un­tuk memperkenalkan dan memasarkan produk ung­gulan SOLPHY-2 secara luas, baik kepada perusahaan MRO maupun airlines domes­tik dan international.
Kemajuan yang te­lah dicapai dalam industri dir­gantara tentu harus didukung dengan kemampuan unit pen­dukung, yaitu peme­liharaan dan perawatan alat transportasi udara atau yang biasa disebut MRO (Maintenance, Repair, and Overhaul), baik untuk pesawat  terbang maupun helikopter.
Produk SOLPHY-2 me­ru­pakan produk cleaning solvent hasil kerja sama riset dan pengembangan yang dilakukan bersama PT GMF Aero Asia sebagai perusahaan MRO terbesar di Indonesia yang telah banyak dipercaya menangani berbagai jenis perawatan dan pemeliharaan pesawat terbang, baik dari domestik maupun in­ternasional.
SOLPHY-2 merupakan produk yang memiliki ke­mam­puan cleaning sesuai standar MIL PRF 680 Type I dan telah disertifikasi oleh ba­­dan independen serta approval dari engineering PT GMF Aero Asia sejak 2006. Sampai saat ini sudah digunakan secara luas di lingkup kerja maintenance PT GMF Aero Asia

Sumber : http://www.pertamina.com/news-room/seputar-energi/partisipasi-petrochemical-trading-dalam-aviation-maintenance-repair-and-overhaul-indonesia-2016/

0

Jakarta – PT Perusahaan Gas Negara (Persero) Tbk (PGN) terus memperluas jaringan pipa gas bumi di Indonesia. Dalam setahun terakhir, Badan Usaha Milik Negara (BUMN) ini telah membangun pipa gas sepanjang 825 kilometer (km). Pipa gas yang dibangun adalah pipa transmisi open access dan pipa distribusi gas bumi. Pada akhir 2014, total panjang pipa gas bumi PGN mencapai 6.161 km. Hingga saat ini, pipa PGN bertambah menjadi 6.986 km. Pipa gas bumi PGN ini merepresentasikan 76% pipa gas bumi nasional. “PGN terus berkomitmen untuk menggenjot pembangunan infrastruktur pipa gas untuk memperluas pemanfaatan produksi gas bumi nasional,” kata Direktur Utama PGN, Hendi Prio Santoso, Senin (14/3/2016). Hendi mengungkapkan, beberapa infrastruktur gas bumi yang dibangun sepanjang 2015 adalah perluasan jaringan gas bumi di DKI Jakarta, Bekasi, Cirebon, Pasuruan, Surabaya, Sidoarjo, Semarang, Medan, Batam dan daerah lainnya sepanjang lebih dari 500 km. Pipa gas tersebut dibangun antara lain untuk mendukung penyaluran gas bumi untuk rumah tangga. “PGN memiliki Program Sayang Ibu, program ini bertujuan memperbanyak rumah menggunakan energi baik gas bumi. Mulai tahun ini hingga 2019 mendatang kami akan menambah 110.000 sambungan gas rumah tangga,” ujar Hendi. Selain itu, PGN juga menyelesaikan pembangunan pipa transmisi gas bumi open access Kalimantan – Jawa (Kalija) I sepanjang lebih dari 200 km. Pipa gas Kalija I ini menghubungkan sumber gas Lapangan Kepodang di Laut Utara Jawa Tengah ke pembangkit listrik PLN Tambak Lorok. Mulai 2016-2019, PGN juga akan menambah jaringan pipa gas baik transmisi maupun distribusinya sepanjang lebih dari 1.650 Km. “PGN juga merencanakan pembangunan infrastruktur gas untuk peningkatan pemanfaatan gas domestik. Penambahan panjang pipa gas yang akan dibangun oleh PGN mulai tahun ini sampai 2019 lebih dari 1.680 km,” ungkapnya. Infrastruktur pipa gas bumi yang dibangun sepanjang lebih dari 1.680 km tersebut di antaranya adalah proyek pipa transmisi open access Duri-Dumai-Medan, pipa transmisi open access Muara Bekasi-Semarang, pipa Distribusi Batam (Nagoya) WNTS-Pemping dan pipa distribusi gas bumi di wilayah eksisting dan daerah baru lainnya. Dengan tambahan pipa gas sepanjang lebih dari 1.680 km tersebut, akan membuat jumlah pipa gas bumi PGN yang saat ini sebanyak 6.986 km, pada 2019 nanti menjadi lebih dari 8.660 km. Jumlah ini akan meningkatkan kemampuan penyaluran gas PGN mencapai 1.902 MMscfd.  

Sumber : http://www.bumn.go.id/gasnegara/berita/454/Setahun.Terakhir,.PGN.Bangun.Pipa.Gas.Bumi.825.Km
0

JAKARTA – PT Pertamina Geothermal Energy, anak perusahaan PT Pertamina (Persero) yang bergerak di bidang pengusahaan panas bumi, hari ini telah ditandatangani Perjanjian Pemegang Saham (Shareholders Agreement) dengan Perusahaan Daerah Pembangunan Aceh (PDPA/BUMD Aceh) untuk pengembangan panas bumi Seulawah.   Shareholder Agreement ditandatangani oleh Direktur Utama PGE Irfan Zainuddin dan Direktur Utama PDPA Muhsin yang disaksikan oleh Direktur Utama Pertamina Dwi Soetjipto dan Gubernur Nanggroe Aceh Darussalam Zaini Abdullah di Banda Aceh.   Melalui proses lelang, PT Pertamina (Persero) telah ditunjuk sebagai pemenang lelang Wilayah Kerja Seulawah Agam yang berada di di Propinsi Aceh yang diperkirakan memiliki potensi sampai dengan 165 MW. Pertamina telah menugaskan PGE untuk memenuhi persyaratan lelang dengan mendirikan perusahaan patungan bersama BUMD Aceh dan selanjutnya perusahaan yang dibentuk tersebut akan melakukan eksplorasi dan eksploitasi Panas Bumi berdasarkan Ijin Panas Bumi (IPB) yang akan diterbitkan oleh Pemerintah c.q. Menteri ESDM.   Dengan perjanjian ini, komposisi kepemilihan saham untuk badan usaha patungan antara PGE dan PDPA adalah 75% PGE dan 25% untuk PDPA. Untuk tahap awal direncanakan survey dan eksplorasi untuk menyusun pembangunan PLTP unit I dengan kapasitas sekitar 55MW dengan komitmen investasi untuk tahap eksplorasi sekitar US$40 juta sesuai dengan dokumen penawaran Pertamina dalam lelang WK Seulawah.   “Bagi kami, kerjasama antara PGE dan PDPA tidak sekadar upaya pemenuhan ketentuan pemerintah melainkan juga menjadi komitmen kuat Pertamina untuk maju bersama membangun perekonomian Aceh dengan penyediaan energi yang cukup, dalam hal ini pengembangan potensi panas bumi yang cukup besar di Aceh. Selanjutnya, PGE dan PDPA segera merealisasikan secara konkret proyek panas bumi Seulawah Agam sesuai dengan komitmen investasi kepada pemerintah,” kata Vice President Corporate Communication Pertamina Wianda Pusponegoro.   Wilayah kerja panas bumi Seulawah Agam terletak di Kabupaten Aceh Besar, mencakup Kec. Seulimeum, Krueng Raya dan Indrapuri. Lokasi proyek dapat berjarak sekitar 50 km ke arah tenggara dari kota Banda Aceh.   Sumber : http://www.pertamina.com/news-room/siaran-pers/pertamina-geothermal-energy-gandeng-bumd-aceh-kembangkan-panas-bumi-seulawah-agam/
0

Program 35.000 MW sebagai fokus PLN untuk mewujudkan kemandirian ekonomi dan meningkatkan rasio elektrifikasi tidak hanya bergerak pada proyek pembangunan pembangkit, namun juga pada transmisi dan Gardu Induk (GI). Sesuai dengan komitmen tersebut, PLN saat ini berada dalam jalur percepatan untuk realisasi program 35.000 MW. Adapun rencana yang telah disusun oleh PLN dalam kurun waktu 5 tahun (2014-2019), yakni akan membangun 732 proyek transmisi dan 1.375 GI. Dalam proyek transmisi, kapasitas terpasang sepanjang 43.284 kms (93%) dibangun oleh PLN dan 3.313 kms (7%) dibangun oleh swasta atau Independent Power Plant (IPP). Sementara itu, proyek GI yang dibangun oleh PLN dan IPP masing-masing sebesar 103.839 MVA (95%) dan 4.950 MVA (5%). “Sebagian besar pembangkit listrik, transmisi dan GI yang merupakan bagian dari program 35.000 MW ditargetkan beroperasi di tahun 2019,” ujar Manajer Senior Public Relations PLN Agung Murdifi. Adapun capaian proyek pembangunan transmisi dengan total jalur sepanjang 46.597 kilometer-sirkit (kms) dalam program 35.000 MW ini adalah sepanjang 31.147 kms masih dalam tahap perencanaan dan pengadaan; 13.081 kms dalam tahap konstruksi; dan 2.368 kms telah energize dan mendapatkan rekomendasi laik bertegangan (beroperasi). Berikut adalah rincian pencapaian proyek pembangunan transmisi (kms):
Regional Target Realisasi Capaian
Sumatera 19.305 504 3%
Jawa & Bali 11.185 370 3%
Kalimantan 7.883 826 10%
Sulawesi & Nusa Tenggara 7.207 506 7%
Maluku & Papua 1.017 162 16%
Total 46.597 2.368 39%
Selain pada sisi pembangkit dan transimisi, program 35.000 MW juga memiliki kemajuan dalam pembangunan pada sisi distribusi atau dalam hal ini pembangunan GI. Realisasi kapasitas terpasang proyek GI hingga April 2016 dari total 108.789 Mega Volt Ampere (MVA) adalah sebesar 7.295 MVA telah selesai konstruksinya dan dapat beroperasi dengan rincian sebanyak 76 lokasi berkapasitas 5.615 MVA (75%) dari target RKAP (Rencana Kerja Anggaran Perusahaan) 2015 sebesar 7.480 MVA dan hingga kuartal I 2016 sebanyak 36 lokasi berkapasitas 1.680 MVA (23%) dari total target RKAP 2016 sebesar 7.440 MVA. Sementara itu, GI dengan kapasitas terpasang 90.780 MVA masih dalam tahap perencanaan dan pengadaan; serta sebesar 10.714 MVA masih dalam tahap konstruksi. Berikut adalah rincian pencapaian proyek pembangunan GI (MVA):
Regional Target Realisasi Capaian
Sumatera 32.406 1.690 5%
Jawa & Bali 66.083 4.615 7%
Kalimantan 3.910 650 17%
Sulawesi & Nusa Tenggara 5.260 320 6%
Maluku & Papua 770 20 3%
Total 108.429 7.295 38%
“Dibalik target dan capaian yang dialami program 35.000 MW, PLN juga mengalami kendala dan tantangan dalam pembangunan transmisi dan GI. Namun, beberapa transmisi dan GI yang sempat mangkrak telah berhasil dibangun dan energize pada akhir tahun 2015 dan triwulan I 2016 dengan capaian hingga saat ini untuk masing-masing transmisi dan GI adalah 39% dan 38%,” jelas Agung. Contoh pembangunan yang mangkrak adalah proyek transmisi dari Muara Teweh ke Buntok dan Buntok ke Tanjung yang masuk sistem Kalimantan Selatan dan Tengah (Kalselteng) sempat terhambat akibat terkendala pembebasan lahan dan kompensasi tanam tumbuh. Selain Muara Teweh, PLN juga sempat mengalami kesulitan menyelesaikan pembangunan GI Kota Agung, Lampung, karena terhambat pembebasan lahan dan ruang bebas (Right of Ways/ROW). Namun, hal tersebut berhasil diatasi berkat dukungan penuh dari Pemerintah setempat sehingga pembangunan GI terselesaikan dan dapat memperbaiki kualitas pasokan listrik setempat. “Seluruh proses pembangunan mulai dari pembangkit, transmisi dan GI semoga dapat terealisasi sesuai target dengan adanya dukungan Peraturan Presiden No. 4 Tahun 2016 tentang Percepatan Pembangunan Infrastruktur Ketenagalistrikan, demi memenuhi kebutuhan listrik masyarakat dan mendorong pertumbuhan ekonomi negara,” tutup Agung.   Sumber : http://www.pln.co.id/blog/program-35-000-mw-pln-telah-bangun-2-368-kms-transmisi-dan-7-295-mva-gardu-induk/
0